Abstract

Miscanthus sinensis Anderss. is a good candidate for C4 bioenergy crop development for marginal lands. As one of the characteristics of marginal lands, salinization is a major limitation to agricultural production. The present work aimed to investigate the possible factors involved in the tolerance of M. sinensis C4 photosynthesis to salinity stress. Seedlings of two accessions (salt-tolerant 'JM0119' and salt-sensitive 'JM0099') were subjected to 0mm NaCl (control) or 250mm NaCl (salt stress treatment) for 2weeks. The chlorophyll content, parameters of photosynthesis and chlorophyll a fluorescence, activity of C4 enzymes and expression of C4 genes were measured. The results showed that photosynthesis rate, transpiration rate, chlorophyll content, PSII operating efficiency, coefficient of photochemical quenching, activity of phosphoenolpyruvate carboxylase (PEPC) and pyruvate, orthophosphate dikinase (PPDK) and gene expression of PEPC and PPDK under salinity were higher after long-term salinity exposure in 'JM0119' than in 'JM0099', while activity of NADP-malate dehydrogenase (NADP-MDH) and NADP-malic enzyme (NADP-ME), together with expression of NADP-MDH and NADP-ME, were much higher in 'JM0099' than in 'JM0119'. In conclusion, the increased photosynthetic capacity under long-term salt stress in the salt-tolerant relative to the salt-sensitive M. sinensis accession was mainly associated with non-stomatal factors, such as reduced chlorophyll loss, higher PSII operating efficiency, enhanced activity of PEPC and PPDK and relatively lower activity of NADP-ME.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call