Abstract
AbstractMigration behaviors of antiozonants in carbon black‐filled rubber vulcanizates with different rubber compositions of natural rubber (NR), styrene–butadiene rubber (SBR), and butadiene rubber (BR) were studied at constant temperatures of 40–100°C and outdoors. Three single rubber‐based vulcanizates, three biblends, and three triblends were used. N‐Phenyl‐N′‐isopropyl‐p‐phenylenediamine (IPPD) and N‐phenyl‐N′‐(1,3‐dimethylbutyl)‐p‐phenylenediamine (HPPD) were employed as antiozonants. Migration rates of the antiozonants became faster with increasing the temperature. The order of the migration rates in the single rubber‐based vulcanizates was BR > NR > SBR. The migration rates in the vulcanizates containing SBR, on the whole, increased with decreasing the SBR content, while those in the vulcanizates containing BR decreased with decreasing the BR content. Difference in the migration behaviors of the antiozonants depending on the rubber composition was explained both by the intermolecular interactions of the antiozonants with the matrix and by interface formed between dissimilar rubbers in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 237–242, 2001
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.