Abstract
Despite the maturity of laser-based powder bed fusion of metals (PBF-LB/M), some barriers prevent the manufacturing process from fully being established in the industry. One drawback is spatter formation, which is disadvantageous to PBF-LB/M for three main reasons. First, adhering spatter can initiate coater collision, resulting in process failure. Second, large adhering spatter may cause lack-of-fusion defects as they require more energy to remelt sufficiently compared to unprocessed powder. Furthermore, big nonadhering spatter cannot be recycled as powder. The recycling of small spatter particles potentially results in degraded material properties. Ring-shaped beam profiles have been established for deep penetration welding to reduce spatter formation. Investigations on ring-shaped beam profiles in PBF-LB/M focus on improving productivity and process robustness. Qualitative spatter reduction in PBF-LB/M using ring-shaped beam profiles has also been reported. This publication quantitatively examines the influence of ring-shaped beam profiles on spatter formation in PBF-LB/M. Image processing algorithms of on-axis high-speed images are utilized for spatter detection and tracking. A self-developed spatter segmentation is used to determine the spatter size. A Laplacian of Gaussian filter is combined with a Kalman tracker to count and track the spatter. The results show that spatter formation is highly influenced by the beam profile and the chosen process parameters. Considering the melt track width, ring-shaped beam profiles could reduce the number of spatter per fused area. High numbers of spatter are generated when parameter sets result in balling. Moreover, spatter velocity is primarily dependent on the introduced dimensionless enthalpy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.