Abstract

Fiber pushout tests are performed on zircon‐matrix composites especially fabricated with a variety of silicon carbide reinforcing fibers and fiber coatings in order to create samples with different interfacial properties, surface roughness, and possibly in different states of residual stress to demonstrate their role on the interfacial and mechanical properties of fiber‐reinforced composites. The data obtained from fiber pushout tests are analyzed using linear, shear‐lag, and progressive debonding models to extract important interfacial properties, residual stresses, and surface roughness. The nature and magnitude of residual stresses in composites are independently characterized by measuring the coefficient of thermal expansion of the fiber, the matrix, and the composite for comparison with similar values measured using the fiber pushout tests. These results are then compared for self‐consistency among different ways of analyzing data and with independently measured and calculated values. The results have shown that independent and complementary methods of data acquisition and analysis are required to fully understand interfacial properties in ceramic composites. In particular, independent measures of the coefficient of thermal expansion, residual stresses, and surface roughness are required to confidently interpret interfacial properties obtained by different analytical approaches and then relate them to the overall mechanical response of composites. It is also shown that composites with optimum mechanical response can be created by suitably engineering the interface using multiple fiber coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.