Abstract

BackgroundRecorded advancements in nerve tissue regeneration have still not provided satisfactory results, and complete physiological recovery is not assured. The engineering of nanofibrous scaffolds provides a suitable platform for stem cell transplantation by controlling cell proliferation and differentiation to replace lost cells. In this study, a conductive scaffold was fabricated by in situ synthesis of gold nanoparticles (Au-NPs) on electrospun polycaprolactone/chitosan nanofibrous scaffolds and its effect on neural differentiation of mesenchymal stem cells was investigated. MethodThe conductive scaffold was prepared using polycaprolactone/chitosan solution containing soluble Au ions by electrospinning approach. In situ synthesis of Au-NPs was conducted using two reducing agents, Tetrakis(hydroxymethyl)phosphonium chloride (THPC) as an organophosphorus compound and formaldehyde, and also different reduction times. Morphology and distribution of the Au-NPs on the nanofibrous scaffolds were assessed using field emission scanning electron microscopy (FE-SEM) and energy dispersed X-ray spectroscopy (EDX). The hydrophilicity and biocompatibility of the scaffolds were determined by water contact angle and MTT assays respectively. The characterization of the scaffolds was proceeded by testing the porosity, tensile strength and electrical conductivity. Also, the scaffold's ability to support neural differentiation of mesenchymal stem cells was evaluated by immune-staining/blotting of Beta tubulin III. Results & conclusionFE-SEM and EDX results demonstrated the uniform distribution of Au-NPs on electrospun nanofibers made of a combination of polycaprolactone and chitosan (PCL/CS). We found that electrical conductivity of the scaffolds fabricated using THPC for 4 days and formaldehyde for 7 days was in the range of electrical conductivity of the scaffolds suitable for nerve regeneration. Contact angle measurements showed the effect of Au-NPs on the hydrophilic properties of the scaffolds, where the scaffold showed the porosity of 50% in the presence of Au-NPs. Au-NPs decoration on the scaffold decreased the mechanical properties with the ultimate strength of 14 (MPa). In vitro assessment demonstrated the potential of the fabricated conductive scaffold to enhance the attachment and proliferation of fibroblast cells, and differentiation potential of mesenchymal stem cells toward neuron-like cells. This designed scaffold holds promise as a future carrier and delivery platform in nerve tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.