Abstract

High-yield SiC/SiO2 core-shell nanowires were synthesized without adding metal catalysts from outside through a simple thermal evaporation of silicon powders during decomposition of methane gas. The influence of three parameters, size of Si raw powder (50 nm and 5 μm), reaction temperature (1573, 1623 and 1673 K), and soaking time (1, 3 and 6 h), was investigated. The typical synthesized nanowires from different conditions possess the diameter of no thicker than 100 nm with several tens micrometers in length. It was addressed that the condition using the smaller size Si powder, which contained the highest amount of oxygen, at higher temperature lead to more complete reaction to obtain a large quantity of nanowires. The synthesized nanowires at higher reaction temperature and longer soaking time possessed larger core than those nanowires prepared at lower reaction temperature and shorter soaking time. Oxidation of larger size Si powder improved yield of nanowires. Based on these results, it was suggested that the typical nanowires should be grown via the oxide-assisted growth mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.