Abstract

Rail cant is one of the most important track geometry parameters, which can change the wheel-rail contact relationship and then influence the dynamic interaction. Static contact geometry parameters for 75kg/m rail in contact with LM wheel tread under different rail cants are analyzed on the basis of the wheel-rail spatial contact geometry algorithm. A train (multi-vehicle)-track coupling dynamic model is established with the help of the software Universal Mechanism (UM), and dynamic performances of train-track system in curves are compared under different rail cants. The results indicate that: (1) flange contact is less likely to occur under 1/20 rail cant, which will reduce uneven wear of wheel/rail tread. (2) In the single-point contact range, when the rail cant increases from 1/40 to 1/20, the corresponding rolling radius difference, contact angle parameter, equivalent conicity and equivalent contact angle parameter all increase, which means the self-centring capacity of wheelset is enhanced and the wheel-rail relationship is improved. (3) When the train passes curves, the increase of rail cant from 1/40 to 1/20 can reduce the wheel-rail dynamic interaction and wear. Besides, the wheel-rail contact area may become bigger, which is conductive to reducing contact stress and contact fatigue failures. The results can provide reference for the design of rail cant of heavy haul railway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call