Abstract

Abstract Magnetic behaviour of nanotubes with square cell has been studied by the Monte Carlo Method, under the Metropolis algorithm and Heisenberg model. The Hamiltonian used includes nearest neighbour exchange interaction and radial and tangential direction for uniaxial anisotropy. Periodic boundary conditions were implemented at the sample’s edges. Simulations were carried out varying the nanotube’s diameter by changing the number of magnetic moments per ring and anisotropy values. Two transition temperatures were identified corresponding to states where moments were aligned as either ferromagnetic type or anisotropy direction. At low temperatures and low anisotropy values, the system exhibited a ferromagnetic alignment; as the anisotropy was increased, and continued in the low temperature range, spins were aligned in the anisotropy (radial or tangential) direction. As the temperature was increased, spins were reoriented in the ferromagnetic direction, generating a radial (tangential) anisotropy to ferromagnetic transition temperature. When the temperature continued increasing, the system transited toward the paramagnetic phase, appearing a ferromagnetic to paramagnetic transition phase temperature. In several cases studied here, between these two transition temperatures (anisotropy to ferromagnetic and ferromagnetic to paramagnetic transition phases), the magnetization of the system exhibited instabilities. These instabilities are caused because of the influence of the anisotropy values and the diameter of the nanotubes on the magnetic domains formation. As a consequence, there exist anisotropy values and diameters where metastable states were formed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.