Abstract
Excitation energy transfer (EET) plays a vital role in many areas of physics and biology processes. Here we address the role of quantum-jump-based feedback control in the efficiency of EET through a chain model. Usually, the decoherence caused by dissipative noise is detrimental to the transfer efficiency. We demonstrate that feedback control can always enhance the efficiency of EET and the dependence of different feedback controls is also discussed in detail. In addition, we investigate the strategy to enhance the efficiency of EET in the Fenna–Matthews–Olson complex as a prototype for larger photosynthetic energy transfer systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.