Abstract
Abstract Radiationless resonance electronic excitation energy transfer (ET) is a fundamental physical phenomenon in luminescence spectroscopy playing an important role in natural processes, especially in photosynthesis and biochemistry. Besides, it is widely used in photooptics, optoelectronics, and protein chemistry, coordination chemistry of transition metals and lanthanides as well as in luminescent analysis. ET involves the transfer of electronic energy from a donor (D) (molecules or particles) which is initially excited, to an acceptor (A) at the ground state to emit it later. Fluorescence or phosphorescence of the acceptor that occurs during ET is known as sensitized. There do many kinds of ET exist but in all cases along with other factors the rate and efficiency of ET in common solvents depends to a large extent on the distance between the donor and the acceptor. This dependency greatly limits the efficiency of ET and, correspondingly, does not allow the determination of analytes in highly diluted (10–9–10–15 M) solutions. To solve the problem of distance-effect, the effects of concentrating and bring close together the donor and acceptor in surfactant micelles (liquid nanosystems) or sorption on solid nanoparticles are used. Various approaches to promote the efficiency of ET for improvement determination selectivity and sensitivity using liquid and solid nanoobjects is reviewed and analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.