Abstract

Two-wire tandem submerged arc welding process involves simultaneous depositions from two electrode wires with the leading wire usually connected to a DC power source and the trailing wire connected to a pulsed AC power source. The weld bead profile and mechanical properties in the tandem submerged welding are significantly affected by the leading and trailing wire current transients and the welding speed. We present here a detailed experimental study on the influence of leading wire current, trailing wire current pulses, and welding speed on the weld bead dimensions and mechanical properties in single-pass tandem submerged welding of a typical HSLA steel. It is realized that the weld bead penetration is primarily influenced by the leading wire current while the weld bead width and the reinforcement height are sensitive to the trailing wire current pulses. Greater magnitude of trailing wire current pulses and shorter negative pulse duration increase the weld pool volume leading to reduced cooling rate and poor mechanical properties as the formation of the strengthening phases like acicular ferrite is inhibited. In contrast, increase in welding speed reduces the rate of heat input thereby enhancing the cooling rate and the weld bead mechanical properties. A set of empirical relations are developed to estimate the weld bead dimensions and mechanical properties as function of the welding conditions. The predictions from the empirical relations and the corresponding measured results are observed to be in fair agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call