Abstract

The nucleation and the growth of misoriented micro-structure components in single crystals depend on various process parameters and alloy compositions. Therefore, in this study, the influence of different cooling rates on carbon-free, as well as carbon-containing, nickel-based superalloys was investigated. Castings were carried out using the Bridgman and Bridgman-Stockbarger techniques under industrial and laboratory conditions, respectively, to analyze the impact of temperature gradients and withdrawing rates on six alloy compositions. Here, it was confirmed that eutectics could assume a random crystallographic orientation due to homogeneous nucleation in the residual melt. In carbon-containing alloys, eutectics also nucleated at low surface-to-volume ratio carbides due to the accumulation of eutectic-forming elements around the carbide. This mechanism occurred in alloys with high carbon contents and at low cooling rates. Furthermore, micro-stray grains were formed by the closure of residual melt in Chinese-script-shaped carbides. If the carbide structure was open in the growth direction, they could expand into the interdendritic region. Eutectics additionally nucleated on these micro-stray grains and consequently had a different crystallographic orientation compared with the single crystal. In conclusion, this study revealed the process parameters that induced the formation of misoriented micro-structures, which prevented the formation of these solidification defects by optimizing the cooling rate and the alloy composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.