Abstract

Predicting material properties has always been a challenging task in materials science. With the emergence of machine learning methodologies, new avenues have opened up. In this study, we build upon our recently developed graph neural network (GNN) approach to construct models that predict four distinct material properties. Our graph model represents materials as element graphs, with chemical formulas serving as the only input. This approach ensures permutation invariance, offering a robust solution to prior limitations. By employing bootstrap methods to train this individual GNN, we further enhance the reliability and accuracy of our predictions. With multi-task learning, we harness the power of extensive datasets to boost the performance of smaller ones. We introduce the inaugural version of the Materials Properties Prediction (MAPP) framework, empowering the prediction of material properties solely based on chemical formulas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.