Abstract

The majority of manufacturers of polymer filaments for FDM technology rely their datasheets only on tensile tests, so their documentation usually lacks any data concerning fracture mechanics parameters. Having in mind the importance of fracture mechanics parameters in material design and application e.g., plane-strain fracture toughness, and the fact that it can be measured using only standard tensile grips, or three-point bending test fixture on a regular tensile testing machine, this practice offers vital information for AM components carrying the load. Anyhow, it is not always a simple task to satisfy all requirements of the standard for plane-strain fracture toughness assessment of plastic materials (ASTM D5045-14), as in the case of FDM technology due to many printing parameters that not only influence fracture toughness results, but also can question the eligibility of test results if crack propagation deviates from the expected path or if the specimens don’t meet the size criterion necessary for achieving the plane-strain condition. These problems are tackled in this research on PLA polymer, a material widely used in FDM technology. For this research SENB specimens are prepared according to ASTM D5045-14 standard and tested on tensile testing machine using three-point bending test fixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call