Abstract

This study prepared a 5052H112 alloy under different cold-rolled reductions to explore its microstructure and mechanical properties. The experimental results indicated that the cold-rolled specimens had good tensile properties and better vibration fracture resistance, due to the high densities of dislocation and small aspect ratio of crystal grain. The stress-elongation curves of all specimens showed the serrated yielding. The high densities of dislocation and small aspect ratio of crystal grain introduced by cold-rolling could hold the mobile dislocations long enough to let Mg atoms form atmospheres around them. In addition, the crack propagation behavior of all specimens showed that slip bands can be observed in the vicinity of the main crack and be suppressed by increasing the cold-rolled reduction. Crack propagation showed that rolled specimens exhibit decreasing crack propagation rates with increased matrix strengthening (cold-rolling). Therefore, it can be concluded that a large number of dislocation tangles introduced by cold-rolling are effective in improving mechanical properties. [doi:10.2320/matertrans.M2014305]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.