Abstract

In this study, 5083 Al–Mg plates were friction stirred at optimal rotation speeds to investigate the tensile properties and vibration fracture resistance. As a result, grain refinement could be observed at the stir zone with 7 μm average grain size and fine particles could be observed as well. The tensile strain–elongation curves reveal that the tensile strength and elongation tended to increase as the microstructure was refined in the friction stirred sample. The D–N curves of the specimens recorded under an identical initial deflection show that there was a slight difference between the parent metal and the friction stirred sample. A refined grain size is partially responsible for an improvement in vibration fracture resistance; however there is another factor which plays a role too. It should be noted that the deterioration of vibration fracture resistance is a consequence of fine particles stirred into a softened matrix. From the crack propagation results, an intergranular crack propagation feature can be recognized in the friction stirred specimen, and it is reasonable to suggest that the fine particles played an important role in the deterioration of the vibration fracture resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.