Abstract
Enhanced oil recovery (EOR) methods are generally employed in depleted reservoirs to increase the recovery factor beyond that of water flooding. Polymer flooding is one of the major EOR methods. EOR polymer solutions (especially the synthetic ones characterized by flexible chains) that flow through porous media are not only subjected to shearing forces but also extensional deformation, and therefore, they exhibit not only Newtonian and shear thinning behavior but also shear thickening behavior at a certain porous media shear rate/velocity. Shear rheometry has been widely used to characterize the rheological properties of EOR polymer systems. This paper aims to investigate the effect of the polymers' concentrations, ranging from 25 ppm to 2500 ppm, on the viscous, linear, and non-linear viscoelastic properties of hydrolyzed polyacrylamide (HPAM) in shear field and porous media. The results observed indicate that viscous properties such as Newtonian viscosity increase monotonically with the increase in concentration in both fields. However, linear viscoelastic properties, such as shear characteristic time, were absent for concentrations not critical in both shear rheometry and porous media. Beyond the critical association concentration (CAC), the modified shear thinning index decreases in terms of concentration in both fields, signifying their intensified thinning. At those concentrations higher than CAC, the viscoelastic onset rate remains constant in both fields. In both fields, the shear thickening index, a strict non-linear viscoelastic property, initially increases with concentration and then decreases with concentration, signifying that the polymer chains do not stretch significantly at higher concentrations. Also, another general observation is that the rheological properties of the polymer solutions in both porous media and shear rheometry only follow a similar trend if the concentration is higher than the CAC. At concentrations less than the CAC, the shear and porous media onset rates follow different trends, possibly due to the higher inertial effect in the rheometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.