Abstract
An appropriate planting density could realize the maximum yield potential of crops, but the mechanism of sweet potato storage root formation in response to planting density is still rarely investigated. Four planting densities, namely D15, D20, D25, and D30, were set for 2-year and two-site field experiments to investigate the carbohydrate and lignin metabolism in potential storage roots and its relationship with the storage root number, yield, and commercial characteristics at the harvest period. The results showed that an appropriate planting density (D20 treatment) stimulated cambium cell differentiation, which increased carbohydrate accumulation and inhibited lignin biosynthesis in potential storage roots. At canopy closure, the D20 treatment produced more storage roots, particularly developing ones. It increased the yield by 10.18-19.73% compared with the control D25 treatment and improved the commercial features by decreasing the storage root length/diameter ratio and increasing the storage root weight uniformity. This study provides a theoretical basis for the high-value production of sweet potato.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.