Abstract

The influence of pit defects on AlGaN surface and dislocation defects in GaN buffer layer on the current collapse of MOVPE-grown AlGaN/GaN high electron mobility transistors (HEMTs) is studied in this paper. Pulsed gate voltage measurements show that the surface pit defects result in gate lag current collapse and increased of source/drain resistance. And the more pit defects exist, the more obvious current collapse and increased source/drain resistance are observed. Pulsed drain voltage measurements show that the drain lag current collapse, which is almost unaffected by the surface pit defects, can be associated with the dislocation defects in GaN buffer layer. Our experimental results indicate that pit defects on AlGaN surface and dislocation defects in GaN buffer layer can be one of the origins of gate lag and drain lag current collapse, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.