Abstract

Maintaining the mechanical properties of biofunctional hydrogels of natural resources for tissue engineering and biomedical applications for an intended period of duration is a challenge. Though anionic polysaccharide alginate has been hailed for its excellent biomimetic characters for tissue engineering, it usually fails in load bearing and other dynamic mechanical environment. In this paper this issue was addressed by copolymerizing alginate with the biocompatible and mechanically robust synthetic biodegradable polyester and crosslinking with polyethylene glycol diacrylate (PEGDA) and vinyl co-monomers, 2-hydroxy ethyl methacrylate (HEMA), methyl methacrylate (MMA) and N N׳ methylene bis acrylamide (NMBA) to form three hydrogels. All three hydrogels were amphiphilic, hemocompatible and non-cytotoxic. These hydrogels exhibited appreciable water holding capacity. Comparatively, hydrogel prepared with PEGDA–NMBA crosslinkers displayed larger pore size, increased crosslinking, higher tensile strength and controlled degradation. With appreciable swelling and EWC, this hydrogel elicited better biological responses with long-term cell viability for cardiac tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call