Abstract
Failure of current therapies to cure chronic hepatitis B has led to renewed interest in therapies that stimulate the host immune system. APOBEC3 (A3) family enzymes have been shown to induce mutations in hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) leading to inhibition of HBV transcription and replication. Pattern recognition receptor (PRR) agonists have been reported to suppress HBV, but it is unclear whether these agonists induce A3 gene expression in hepatocytes. We, therefore, evaluated whether PRR signaling activates the expression of A3 genes and other innate immunity genes and restricts HBV infection. HepG2-sodium taurocholate cotransporting polypeptide (NTCP) cells were infected with HBV and treated with various PRR agonists. The level of HBV infection was subsequently assessed by measurement of HBV biomarkers, including HBV DNA, cccDNA, HBs, and HBe antigens in infected hepatocytes. Among all tested PRR ligands, only Poly(I:C)-HMW/LyoVec and Poly(I:C)-HMW significantly inhibited hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), HBV DNA, and cccDNA, whereas R848 and lipopolysaccharide (LPS) only showed significant inhibition on HBsAg and HBeAg, but not virus DNA. CpG and Pam3CSK4, on the other hand, had no significant inhibitory effect on any of the HBV infection parameters. Moreover, Poly(I:C)-HMW/LyoVec and Poly(I:C)-HMW were the only ligands that significantly increased IL-8 secretion. Interestingly, HBV infection reduced IL-8 secretion induced by Poly(I:C)-HMW and to a lesser extent Poly(I:C)-HMW/LyoVec. Poly(I:C)-HMW/LyoVec had a significant effect on increasing the expression level of A3F, A3G, A3H, TLR3, RIG-1, and MDA5 genes. Our data suggest that PRR agonists may control HBV infection through different mechanisms. The RIG-1 and MDA5 agonist, Poly(I:C)-HMW/LyoVec, seems to downregulate HBV infection through induction of A3 genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.