Abstract

Rupturing the alumina shell (shell-breaking) is a prerequisite for releasing energy from aluminum powder. Thermal stress overload in a high-temperature environment is an important factor in the rupture of the alumina shell. COMSOL Multiphysics was used to simulate and analyze the shell-breaking response of micron-scale aluminum particles with different particle sizes at 650 °C in vacuum. The simulation results show that the thermal stability time and shell-breaking response time of 10 μm–100 μm aluminum particles are 0.15 μs–11.44 μs and 0.08 μs–3.94 μs, respectively. They also reveal the direct causes of shell breaking for aluminum particles with different particle sizes. When the particle size is less than 80 μm, the shell-breaking response is a direct result of compressive stress overload. When the particle size is between 80 μm and 100 μm, the shell-breaking response is a direct result of tensile stress overload. This article provides useful guidance for research into the energy release of aluminum powder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call