Abstract
Abstract Molecular-frame photoelectron momentum distributions (MF-PMDs) have been studied for imaging molecular structures. We investigate the MF-PMDs of CO2 molecules exposed to circularly polarized (CP) attosecond laser pulses by solving the time-dependent Schrödinger equations based on the single-active-electron approximation frames. Results show that high-frequency photons lead to photoelectron diffraction patterns, indicating molecular orbitals, these diffraction patterns can be illustrated by the ultrafast photoionization models. However, for the driving pulses with 30 nm, a deviation between MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because the Coulomb effect strongly influences the molecular photoionization. Meanwhile, the MF-PMDs rotates in the same direction as the helicity of driving laser pulses. Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superposition of those in the parallel and perpendicular linearly polarized cases. The simulations efficiently visualize molecular orbital geometries and structures by ultrafast photoelectron imaging. Furthermore, we determine the contribution of HOMO and HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.