Abstract
The solidification behavior of suspensions of alumina particles during directional solidification is investigated here by in situ observations using X‐ray radiography and tomography. The objective of this study was to assess the influence of particle size on the solidification behavior of the suspensions during the early stages of solidification. Four powders with particle size in the range of 0.2–3.4 μm (median size) were investigated. Solidification is obtained by cooling at a constant rate, starting from room temperature. Attention is specifically paid to the nucleation and growth behavior of the ice crystals in these suspensions. We propose that the nucleation of ice crystals is controlled by the particle size, the surface of the particles acting as nucleation sites. Smaller particle size leads to a lower degree of supercooling because nucleation and growth can proceed at a higher temperature than with larger particles. The initial interface velocity is dependent on the degree of supercooling, and controls the extent of the initial structural gradient in the resulting porous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.