Abstract

The cavitation wear process is one of the major wear mechanisms in turbines and rotors of hydroelectric power plants in Brazil. An effective way to increase the cavitation resistance is the use of coatings, applied by thermal spraying. The high-velocity oxy-fuel process (HVOF) is one of the most used thermal spraying processes, and it is widely adopted for applying coatings for protection against wear and in maintenance components. A FeCrMnSiB experimental alloy was deposited onto SAE 1020 substrate by HVOF process, in order to evaluate the influence of the powder particle size range on the morphology and cavitation resistance of the coatings. The morphology of the coatings showed an increase in oxide content with powder size reduction. The increase in the powder particle size reduced the wettability of the particles, observed by the increase in the quantity of non-melted particles. Higher particle size distribution led to an increase in erosion rate, due to higher presence of non-melted particles in the coatings and consequently reduction of splats adhesion. The cavitation damage was perceived mainly by the mechanism of lamellae detachment; however, part of the damage was also absorbed by strain hardening due to the γ-e martensitic transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call