Abstract

Abstract Cavitation and corrosion on hydrodynamic components and systems reduces the operational efficiency. The use of wear resistant coatings have been studied as a solution to the problem of corrosion and cavitation in the industrial environment. Thermal spray processes are recognized as excellent technique to deposit coatings. The high velocity oxy-fuel process (HVOF) can produce high density and bond strength coatings. High velocity air-fuel process (HVAF) is an alternative process, shown to be superior regarding corrosion protection and production costs. HVAF can deposit coating with shorter dwell time and lower temperature, producing coating with lower oxide content. This paper presents the use of HVOF and HVAF process to deposit FeCrMnSiNi and FeCrMnSiB coatings, studying the resistance against corrosion and cavitation in comparison to 316L HVOF coating. Microstructure was analyzed by XRD, microscopic means and mechanical testing. Cavitation and corrosion behavior of the coatings were also studied comparatively. HVAF coatings presented lower porosity and oxide levels, as well as higher hardness values, compared with the coatings deposited by HVOF process. The HVAF process presented better cavitation resistance than HVOF coatings. The FeCrMnSiNi HVAF coating had the best corrosion protection performance between the developed alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call