Abstract

In this study the production of thin nanoparticulate coatings on solid stainless-steel substrates using dip-coating was investigated. Defined particle sizes and particle size distributions of Al2O3-nanoparticles were adjusted by stirred media milling using various operating parameters. Using nanoindentation the influence of particle size and width of the particle size distribution on the mechanical properties was investigated. In particular the establishment of nanoindentation routines for particulate thin films in contrast to hard coatings is discussed. Nanoindentation appears to be an efficient method for analysing mechanical properties of said thin coatings. It will be shown, that the influence of the substrate can be neglected for small indent depth while the coating's surface roughness influences the employed routine of the nanoindentation. The effect of the median particle size and the width of the particle size distribution on the coating structure and the micromechanical coating properties will be discussed. As a result, the maximum indentation force decreases with decreasing particle size but rises again once the nanoparticles reach very small sizes. A change in the width of the particle size distribution influences the micromechanical properties and coating structure as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.