Abstract

Powder bed fusion (PBF) is the most commonly adopted additive manufacturing process for fabricating complex metal parts via the layer-wise melting of a powder bed using a laser beam. However, the qualification of PBF-manufactured parts remains challenging and expensive, thereby limiting the broader industrialization of the technology. Powder characteristics significantly influence part properties, and understanding the influencing factors contributes to effective quality standards for PBF. In this study, the influence of the particle size distribution (PSD) median and width on powder flowability and part properties is investigated. Seven gas-atomized SS316L powders with monomodal PSDs, a median particle size ranging from 10 μm to 60 μm, and a distribution width of 15 μm and 30 μm were analyzed and subsequently processed. The PBF-manufactured parts were analyzed in terms of density and melt pool dimensions. Although powder flowability was inversely related to the median particle size, it was unrelated to the distribution width. An inverse relationship between the median particle size and the part density was observed; however, no link was found to the distribution width. Likely, the melt pool depth and width fluctuation significantly influence the part density. The melt pool depth decreases and the width fluctuation increases with an increasing median particle size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call