Abstract

This study investigates the effect of oxygen on the metastable pitting corrosion behavior of Super 13Cr martensitic stainless steel in a CO2-saturated environment, which is pertinent to challenging extraction conditions of oil and gas industry. Potentiostatic polarization and comprehensive statistical analysis to assess the corrosion dynamics. The results indicate that the presence of oxygen significantly influences the initiation and progression of metastable pitting. In the 50 % O2 + 50 % CO2 environment, a decrease in the frequency and size of metastable pitting events was observed, along with a reduction in the peak current, pit radius, and stable product, suggesting that oxygen inhibits the transition from metastable to stable pitting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.