Abstract
Injecting acrylic and, increasingly, calcium-phosphate cements into the porous bone structure is an emerging procedure, referred to as vertebroplasty, for the augmentation of osteoporotic vertebrae. Despite the benefits of vertebroplasty, it has limitations. The limitations of interest in this study are the injectability of bone cements and their mixing variability (i.e., low reproducibility of resulting viscosity). The objective of this study is to investigate the effect of oscillatory versus manual mixing on cement viscosity and mixing variability. Five cements are tested: (a) Vertebroplastic, (b) DP-Pour, (c) Antibiotic Simplex, (d) chronOS Inject, and (e) Biopex. Compared to manual mixing, oscillatory mixing significantly decreased the mean viscosity and the mixing variability, which was inferred from the coefficient of variation. For example, under oscillatory mixing, the viscosity and the variability for Vertebroplastic decreased to one-third of the corresponding values for manual mixing. Similar results were obtained for the other cements. The decrease in viscosity is attributed to the pseudo-plastic behavior of bone cements. The decrease in the variability of cement viscosity was attributed to greater dispersive mixing of the cement components under oscillatory mixing. The decrease in viscosity eases the injection by reducing the pressure required. The decrease in the variability of cement viscosity increases reproducibility of the cement injection. Oscillatory mixing appears to have the potential to contribute to improving vertebroplasty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.