Abstract

Fatigue tests have been conducted on an advanced disc Ni-based superalloy [low solvus, high refractory (LSHR) alloy] at 650 °C in air under three-point bend loading to investigate the role of orientation-dependent grain boundary (GB) oxidation in crack initiation and early propagation. It is found that crack initiation occurs mainly from bulged GB oxides, and cracks then predominantly propagate along the oxidised grain boundaries. These bulged oxides are extremely enriched in Co and preferentially form at the boundaries between high and low Schmid factor grains which are inclined normal to the applied tensile stress direction. Meanwhile, relatively flat/thin Ni/Ti/Al-rich oxide complexes also form at other grain boundaries, but they appear to be much less detrimental in fatigue crack initiation and propagation compared with the bulged GB Co-rich oxide complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.