Abstract

Fatigue crack initiation and early short crack propagation behaviour in two microstructural variants of a recently developed Low Solvus, High Refractory (LSHR) disc superalloy at room temperature has been investigated by three-point bending with replication procedure. The results shows that fine gained (FG) LSHR possesses higher fatigue life due to its better crack initiation resistance, limited crack coalescence and comparable Stage I crack propagation resistance to the coarse grained (CG) LSHR, although its resistance to Stage II crack propagation is inferior. Twin boundary (TB) cracking in the relatively large grains dominates the crack initiation process along with occasional crack initiation due to slip band cracking. Activation of the primary slip systems parallel to the TB at matrix and twin and high resolved shear stress associated with high Schmid factor (SF) are required for TB crack initiation. Cracks preferentially propagate along slip bands associated with high SF slip systems after initiation. But cracks also propagate along slip bands associated with slip systems with lower SF if the inclination angle between the slip band ahead of the crack tip and the crack segment of the crack tip is small enough to enable a steady transition (or non-deflected growth) of cracks across the grain boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.