Abstract
This study attempted to investigate the influence of operation mode and wastewater strength on startup period, aerobic granular sludge (AGS) characteristics, and system effluent quality at pilot scale. Granulation was monitored in three pilot-scale granular sequencing batch reactors (GSBRs). Comparative evaluation of AN/O/AX/O_SBR and O_SBR, fed with wastewater of the same composition but run with completely different SBR reaction phase arrangements (alternating vs. purely aerobic), revealed the effect of SBR operation mode. Comparative study of the GSBRs operated with alternating SBR reaction phases (AN/O/AX/O_SBR and AN/O_SBR) and fed with wastewater of different strength (high- vs. medium-strength) determined the effect of wastewater composition. Granulation time and granule size were regulated by wastewater strength and the resulting organic and sludge loading conditions. Whereas, AGS morphology, granule structure, and floccular proportion of AGS were attributed to SBR operation mode. Effluent clarity in terms of suspended solid concentration depended on wastewater strength. Subtle but distinct microbial selection strategies were in effect during granulation which were also imposed by wastewater strength. Due to strong correlation between the effluent and AGS microbial structures, demonstrated by biodiversity analysis, differences in the microbial composition of effluent biomass and washout patterns of the GSBRs could be explained by wastewater strength as well. Limited nutrient removal efficiencies, restricted by organic matter concentration, could be due to involvement of unorthodox nutrient removal pathways which warrants further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.