Abstract

Typical gear failures like wear, scuffing, micropitting and pitting are influenced by the oil temperature in the lubrication system. High temperatures lead to low viscosities and thus thin lubricant films in the gear mesh with generally detrimental influence on failure performance. On the other hand, for gear oils with additives higher temperatures correspond with higher chemical activity and, at least in some cases, with better failure performance of the lubricant. Last, but not least, at very high temperatures even metallurgical changes have been found with a reduction in material endurance limits. Examples for the influence of oil temperature on gear failure modes, as well as their introduction into load carrying capacity calculation methods are shown. With this background, the often-applied practice of increasing the severity of a gear oil test method by increasing the oil temperature has to be revised. Adequate solutions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.