Abstract
Potatoes, a vital global food crop, have shown remarkable adaptability, significantly contributing to food security. Technological advancements now enable their cultivation from soil-based systems to liquid synthetic nutrient media, even in artificial closed environments without natural light or fertile soil. This study examined the effects of Benzylaminopurine (BAP) and Kinetin (Kin) at concentrations ranging from 0 to 5 mg/L and sucrose concentrations ranging from 20 to 120 g/L on in vitro tuberization, focusing on microtuber size, weight, and tuberization rate. Nodal segments from virus-free ‘Red Scarlet’ in vitro potato plantlets were used as explants. These explants were cultured on Murashige and Skoog (MS) medium solidified with 0.5% agar. The study also compared minituber production efficiency under soil-based greenhouse and aeroponic conditions. The highest in vitro potato tuberization rate (90%) was achieved with 80 g/L sucrose and 3.0 mg/L BAP. After induction, virus-free microtubers were transferred to both greenhouse conditions and aeroponic systems for further assessment of minituber production and biochemical composition. These findings demonstrate the potential of aeroponics as a superior method for producing high-quality, pathogen-free minitubers. Aeroponics resulted in significantly higher minituber yields compared to soil-based greenhouse systems, offering a scalable and efficient solution for seed production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have