Abstract

Aiming to explore the influence of nozzle layouts on the lubrication and cooling performance of spur gears under oil jet lubrication conditions, this paper introduces a heat-flow coupled analysis method to predict the temperature field of the tooth surface with different nozzle layouts. Firstly, the friction heat formulas integrating the coefficient of friction and average contact stress are presented for calculating heat generation. We also present the impingement depth model, which considers the nozzle orientation parameters, jet velocity, and gear structure of the given spur gear pair for laying out the nozzle. Then, a heat-flow coupled finite element analysis method is exploited to resemble the jet lubrication process and gain the gear temperature characteristics. Finally, the numerical results of this model compare well with those of the experiments, showing that this heat-flow coupled model provides accurate temperature prediction, indicating that the nozzle layouts determined as a function of the oil jet height, deviation distance, and oil injection angle significantly influence the lubrication and cooling performance. Further, this study also reveals that the lubrication performance in cases where the nozzle approaches the side of the pinion is relatively superior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call