Abstract

Super-pixel feature extraction is a key problem to get an acceptable performance in color super-pixel classification. Given a color feature extraction problem, it is necessary to know which is the best approach to solve this problem. In the current work, we're interested in the challenge of nucleus and cytoplasm automatic recognition in the cytological image. We propose an automatic process for white blood cells (WBC) segmentation using super-pixel classification. The process is divided into five steps. In first step, the color normalization is calculated. The super-pixels generation by Simple Linear Iterative Clustering algorithm is performed in the second step. In third step, the color property is used to achieve illumination invariance. In fourth step, color features are calculated on each super-pixel. Finally, supervised learning is realized to classify each super-pixel into nucleus and cytoplasm region. The present work rallied an exhaustive statistical evaluation of a very wide variety of the color super-pixel classification, with height normalization methods, four-color spaces and four feature extraction techniques. Normalization and color spaces slightly increase the average accuracy of super-pixel classification. Our experiments based to statistical comparison allow to conclude that comprehensive gray world normalized normalization is better than without normalization for super-pixel classification achieving the first positions in the Friedman ranking. RGB space is the best color spaces to be used in super-pixel feature extraction for nucleus and cytoplasm segmentation. For feature extraction, the learning methods work better on the first order statistics features for the automatic WBC segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.