Abstract

Tip-enhanced fluorescence (TEF) with ultra-high detection sensitivity and spatial resolution has been a powerful characterization technique in the study of surface science and life science. Herein, a systematically theoretical investigation in the visible range had been performed to study TEF properties of a single molecule located inside a nanogap formed by Au tip and substrate. In the strong localized surface plasmon coupling effect, the contribution of nonlocal dielectric response to the fluorescence quantum yield as well as radiative and energy dissipated decay rates were calculated. It is found that the nonlocal dielectric effects become comparable to the radiative and energy dissipated decay rates with the increasing of the tip-molecule distance, as a result, the nonlocal dielectric effect significantly suppresses the fluorescence process. The huge excitation enhancement at the shorter tip-molecule distance can efficiently compensate the low quantum yield, leading to the great fluorescence enhancement. The results show that the maximum enhancement obtained from the calculations can reach as high as four orders of magnitude by optimizing the tip-molecule distance. These results are not only helpful to our understanding of the TEF mechanism but also valuable for its further applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.