Abstract

Release rates of hydrophobic organic compounds (HOCs) from the soil matrix influence the availability of HOCs in soils or sediments for microbial degradation or removal by physical means (e.g., soil washing or soil venting). In this study it was shown that the initial contaminant concentration influences the desorption rate. This was attributed to the presence of a limited number of high affinity sites that cause nonlinear sorption behavior. The experimental results could be described with a kinetic model composed of two separate compartments. One compartment was described with a Freundlich isotherm and corresponding kinetics and was assumed to represent sorption to high affinity sites. The second compartment was described with a linear sorption isotherm and first-order kinetics. The model was used to simulate the influence of purging strategies on removal of QCB. The simulations showed that after removal of a fast-desorbing fraction, the slow-desorbing fraction could be efficiently removed at very low purging rates. Intermittent purging reduced the total purging time but the simulations showed large fluctuations in the aqueous pentachlorobenzene concentration. For each subsequent purging interval, the purging efficiency decreased due to the nonlinear desorption kinetics of the slow-desorbing fraction of pentachlorobenzene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.