Abstract

Petroleum-based polymers are not susceptible to microorganisms because of its high molecular weight. Acid treatments convert the polymers into a more oxidized form having low molecular weight. The present in-vitro degradation study focuses on the potential of Cephalosporium species to degrade acid-treated polystyrene (PS) and low-density polyethylene (LDPE) films. A weight loss of around 12% and 13% was achieved for PS and LDPE films respectively in eight weeks of treatment with Cephalosporium species. Fourier transform infrared spectroscopy analysis showed the formation of hydroxyl and carbonyl groups in nitric acid treated PS and LDPE films, respectively. Scanning electron microscopy indicated modifications in the surface morphology of PS and LDPE films after chemical and microbial treatment. An increase in crystallinity of pre-treated polymer samples was observed after fungal treatment. The observations of present study confirmed the enzymatic deterioration and assimilation of pre-treated PS and LDPE samples by the microbial species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call