Abstract

To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the α-Al crystals by diffusion and transportation via Marangoni convection in the SLM process. Moreover, the XRD and TEM results verified that the Al3Ni nanoparticles were created by the in situ reaction of the Ni and aluminum matrix in the Ni/AlSi10Mg samples. Therefore, the microstructure of the Ni-containing alloys was constituted by the α-Al + Si network + Al3Ni phases. The dislocations accumulated at the continuous Si network boundaries and cannot transmit across the dislocation walls inside the Si network. SEM results revealed that the continuity and size of eutectic Si networks can be tailored by adjusting the Ni contents. Furthermore, the Al matrix also benefited from the Al3Ni nanoparticles against the dislocation movement due to their excellent interfacial bonding. The 3Ni-AlSi10Mg sample exhibited high mechanical properties due to the continuous Si networks and Al3Ni nanoparticles. The tensile strength, elongation, Vickers hardness, friction coefficient, and wear volumes of the 3Ni-AlSi10Mg samples were 401.15 ± 7.97 MPa, 6.23 ± 0.252%, 144.06 ± 0.81 HV, 0.608, 0.11 mm3, respectively, which outperformed the pure AlSi10Mg samples (372.05 ± 1.64 MPa, 5.84 ± 0.269%, 123.22 ± 1.18 HV, 0.66, and 0.135 mm3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.