Abstract

Titanium alloys are known for their excellent biocompatible properties. The development of additive-manufacturing technologies has increased the interest in the use of Ti-6Al-4V, produced by selective laser melting (SLM) method, also in dentistry, i.e., prosthodontics and orthodontics. In the present paper, the effect of laser printing parameters in the selective laser melting (SLM) process on the porosity and corrosion behavior of Ti-6Al-4V dental alloy was metallographically and electrochemically studied. All the tests were performed in artificial saliva at 37 °C. Different forms of Ti-6Al-4V alloy were selected: a reference sample, i.e., pre-fabricated milling disc in wrought condition and four different 3D-printed samples made from Ti-6Al-4V powder using the SLM method, one being heat treated. Electrochemical, spectroscopic and hardness measurements were employed in the study. It was shown that the SLM-produced Ti-6Al-4V samples with different printing parameters have similar microstructural and electrochemical properties, while the electrochemical properties of a reference and thermally treated 3D-printed sample were different, most probably due to the change in the microstructure of the alloys. The corrosion properties were related to the microstructural properties as well as to the pore density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call