Abstract

The mutual shielding effect between branches is thought to be one of the reasons for reduced propagation of streamer in nanofluids. However, the mechanism of how these nanoparticles induce streamer branching in oil is not clear. In this paper, a numerical model was established based on charge carrier continuity equations and field-dependent molecular ionization theory to study the propagation and branching of streamer. The effects of isolated particle with different size, permittivity, and location on streamer branching in oil are discussed in detail. It is found that isolated particle with larger size, or greater permittivity, or closer position from streamer would cause strong enough distortion of electric field around the particle. This changes the ionization distribution during the propagation of streamer to induce a side-branch. To simulate the state of “global uniformity and local clumping” of nanoparticles in nanofluids, a multi-nanoparticle system is established. The local clumped nanoparticles play a synergistic effect on electric field distortion. The reduced electric field, the increased propagating path, and the mutual shielding effect of streamer branches are responsible for the improved breakdown voltage of nanofluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.