Abstract

We investigate the influence of nanoparticle–polymer interactions on the apparent migration behavior of multiwall carbon nanotubes (CNTs) in an immiscible polymer blend of ethylene-acrylate copolymer (EA) and polyamide 12 (PA). The polymer-CNTs interaction is tuned by using different surface modification strategies, comprising grafting and coating. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) are chosen as surface modifiers. The nanocomposite materials are prepared by melt-blending polymer-modified-CNTs in EA and PA. Polymer-grafted-CNTs tend to concentrate at the PA/EA interface, even if predispersed in PA, as opposed to pristine CNTs, which stay inside PA under the same circumstances. This new behavior is consistent with the morphology of PA/EA/(PMMA or PS) ternary blends and suggest a dominance of interfacial thermodynamics on CNTs localization. If we use polymer-coated-CNTs instead, the behavior depends on molar mass of the coating polymer. For low molar mass, it is similar to that of pristine CNTs and indicates desorption of the coating, owing to the weak interaction with the CNTs surface. Interestingly, we observe that long PS chains do not desorb and can drive the CNTs to the interface of the PA/EA blend. Moreover, the influence of kinetics is clearly observed through the dependence of CNTs interfacial confinement on dispersed droplet size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call