Abstract

The development of three-dimensional (3-D) scaffolds with highly open porous structure is one of the most important issues in tissue engineering. A novel nanocomposite scaffold of gelatin (Gel), hyaluronic acid (HA), and nano-bioactive glass (NBG) was prepared by blending NBG with a Gel and HA solution followed by lyophilization. The effects of NBG content on the properties of the Gel-HA/NBG composite scaffolds, including the morphologies, porosity, compressive strength, swelling behavior, cell viability and alkaline phosphatase (ALP) activity, were investigated. Porous composite scaffolds with interconnected pores were obtained and the pores became cylindrical with increasing NBG content. The porosity percent and swelling ability decreased with increasing NBG content; however, the compressive strength, cell viability and ALP activity were enhanced. All the results showed the addition of NBG particles can improve the physicochemical and biological properties and the Gel-HA/NBG composite scaffolds exhibited good potential for tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.