Abstract

A comparison was carried out regarding the structure and properties of segmented block copolymers with either non-crystallisable or crystallisable rigid segments. The flexible segment in the block copolymers was a linear poly(propylene oxide) end capped with poly(ethylene oxide), with a segment molecular weight of 2300g/mol. The rigid segments were either non-crystallisable or monodisperse crystallisable polyamides of varying lengths. The morphologies were studied by TEM and AFM, the thermal mechanical properties by DMA and the elastic properties by compression set and tensile measurements. A direct comparison was made of segmented block copolymers with either liquid–liquid demixed or crystallised structures. The crystallised amide segments were more efficient in increasing the modulus and improving the elastic properties than the non-crystallisable ones. The copolymers with crystallised structures were transparent, had a low glass transition temperature of the polyether phase and a modulus that was independent of temperature between Tg and Tm. These copolymers also displayed a very low loss factor (tanδ), suggesting excellent dynamic properties. The hard phase in segmented block copolymers should thus preferably be crystalline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call