Abstract
It is well known that the polymer glass transition temperature T_{g} is dependent on molecular weight, but the role of molecular-weight polydispersity on T_{g} is unclear. Using molecular-dynamics simulations, we clarify that for polymers with the same number-average molecular weight, the molecular-weight distribution profile (either in Schulz-Zimm form or in bimodal form) has very little influence on the glass transition temperature T_{g}, the average segment dynamics (monomer motion, bond orientation relaxation, and torsion transition), and the relaxation-time spectrum, which are related to the local nature of the glass transition. By analyzing monomer motions in different chains, we find that the motion distribution of monomers is altered by molecular-weight polydispersity. Molecular-weight polydispersity dramatically enhances the dynamic heterogeneity of monomer diffusive motions after breaking out of the "cage," but it has a weak influence on the dynamic heterogeneity of the short time scales and the transient spatial correlation between temporarily localized monomers. The stringlike cooperative motion is also not influenced by molecular-weight polydispersity, supporting the idea that stringlike collective motion is not strongly correlated with chain connectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.