Abstract

The search for renewable fuels or components which may improve or replace fossil fuels is an important step towards a sustainable future. In particular, the pine oleoresin produced by conifer trees, which is composed by turpentine oil and non-volatile rosin, may be transformed into alternative fuels. In this work, combustion of six molecules which can be obtained from oleoresin either by distillation (i.e., α- and β-pinene) or by further oxyfunctionalization (nopol, terpineol, myrtenol, and borneol) was studied to assess the potential of pine oleoresin as raw material for biofuels. Emission indices of the main pollutants (carbon monoxide-CO, unburned hydrocarbons-UHC, and nitrogen oxides-NOx) were obtained in non-premixed co-flow laminar flames of the oleoresin-derived molecules blended with n-heptane. The main characteristics of the flames (i.e., temperature and height) were also determined. Significant increase in flame temperature and reduction in CO and UHC emissions with respect to n-heptane were observed with nopol, terpineol, and myrtenol, along an increase in NOx emissions, suggesting an improvement in combustion performance. In addition, differences in emission indices, evidenced for these molecules (even between α- and β-pinene), suggest the importance of the molecular structure in the combustion reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.