Abstract

Coal dust endangers the health and safety of workers in underground coal mines. Therefore, developing coal dust suppressants with dust prevention and explosion-proof properties is critical. The influence of molasses on the explosion and decomposition of the coal dust deposited in underground mines was investigated using 20 L explosion experiments and thermogravimetric and differential thermal analysis (TG-DTA). Findings reveal that, first, molasses can weakly promote the explosion of coal dust at low coal dust concentrations (<400 g/m3) but has no significant effect on the explosion at high coal dust concentrations (≥400 g/m3). Second, the decomposition process of the coal dust mixed with molasses has three stages: the moisture evaporation stage (0–150 °C), the molasses decomposition stage (150–300 °C), and the coal dust decomposition stage (300–500 °C). Molasses oxidation consumes oxygen and releases heat; at low coal dust concentrations, the released heat can promote coal dust decomposition to produce combustible gas, enhancing the coal dust explosion; at high coal dust concentrations, under the co-influence of the heat generation and oxygen consumption, molasses has no effect on the coal dust explosion. This is the mechanism of which molasses influences coal dust explosions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call