Abstract
Coal dust endangers the health and safety of workers in underground coal mines. Therefore, developing coal dust suppressants with dust prevention and explosion-proof properties is critical. The influence of molasses on the explosion and decomposition of the coal dust deposited in underground mines was investigated using 20 L explosion experiments and thermogravimetric and differential thermal analysis (TG-DTA). Findings reveal that, first, molasses can weakly promote the explosion of coal dust at low coal dust concentrations (<400 g/m3) but has no significant effect on the explosion at high coal dust concentrations (≥400 g/m3). Second, the decomposition process of the coal dust mixed with molasses has three stages: the moisture evaporation stage (0–150 °C), the molasses decomposition stage (150–300 °C), and the coal dust decomposition stage (300–500 °C). Molasses oxidation consumes oxygen and releases heat; at low coal dust concentrations, the released heat can promote coal dust decomposition to produce combustible gas, enhancing the coal dust explosion; at high coal dust concentrations, under the co-influence of the heat generation and oxygen consumption, molasses has no effect on the coal dust explosion. This is the mechanism of which molasses influences coal dust explosions.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have