Abstract

Hadron production in relativistic nuclear collisions is well described in the framework of the Statistical Hadronization Model (SHM). We investigate the influence on SHM predictions of hadron mass spectra for light-flavor baryons and mesons modified by the addition of about 500 new states as predicted by lattice QCD and a relativistic quark model. The deterioration of the resulting thermodynamic fit quality obtained for Pb–Pb collision data at sNN=2.76 TeV suggests that the additional states are not suited to be naively used since also interactions among the states as well as non-resonant contributions need to be considered in the SHM approach. Incorporating these effects via the pion nucleon interaction determined from measured phase shifts leads again to excellent reproduction of the experimental data. This is a strong indication that at least the additional nucleon excited states cannot be understood and used as independent resonances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.